

MPI on the Cray XC30

Aaron Vose 4/15/2014

Many thanks to Cray's Nick Radcliffe and Nathan Wichmann for slide ideas.

MPI on XC30 - Overview

- Cray MPI.
- MPI Message Pathways.
- MPI Environment Variables.
 - Environment variables to change MPI defaults.
 - Consequences of changing defaults.
- MPI Progress Engine.

MPI on XC30 - Cray MPI

- Cray MPI uses MPICH2 from Argonne.
- Great start for robust, feature-rich MPI.
- Cray provides enhancements:
 - Low-level communication libraries.
 - Point-to-point performance tuning.
 - Collective performance tuning.
 - Shared memory built on top of XPMEM.

MPI on XC30 - Cray MPI Stack

XE6/XK7 Software Stack

XC30 Software Stack

MPI Pathways - Overview

- Gemini / Ares NIC Resources.
- MPI Message Pathways:
 - Internode Messages:
 - Eager Message Paths: E0, E1
 - Rendezvous Message Paths: R0, R1
 - Intranode Messages:
 - memcpy / xpmem
- How to control which paths are used/when.

MPI Pathways - NIC Resources

- FMA (<u>Fast Memory Access</u>):
 - Used for small messages.
 - Called directly from user mode.
 - Low overhead: low latency.
- BTE (<u>Block Transfer Engine</u>):
 - Used for large messages.
 - All ranks on a node share BTE resources (4 V.C.).
 - Once started, BTE transfers progress without CPU.

MPI Pathways - E0,E1,R0,R1

- Four main pathways:
 - Two Eager: EO, E1.
 - Two Rendezvous: R0, R1.
- Pathways generally based on message size:

MPI Pathways - Eager

- Eager Pathway:
 - Designed for small messages.
 - Data is transferred on encountering send call.
 - E0:
 - Small messages that fit into GNI SMSG Mailbox.
 - E1:
 - Too big for SMSG Mailbox, but small enough for preallocated MPI buffers.

MPI Pathways – E0

Eager messages fit in GNI SMSG Mailbox.

MPI Pathways – E1

Eager messages don't fit in SMSG Mailbox.

MPI Pathways - Rendezvous

- Rendezvous Pathway
 - Designed for large messages.
 - Data is transferred after receiver has posted matching receive for a previously initiated send.
 - R0:
 - RDMA "GET".
 - Can overlap comm/comp in this path: issue send first.
 - R1:
 - Pipelined RDMA "PUTs".
 - Comm/comp overlap with progress engine/threads.

MPI Pathways - RO

No extra copies. Best comm/comp overlap.

MPI Pathways - R1

Repeat 2-6; chunks: MPI_GNI_MAX_NDREG_SIZE.

MPI Progress Engine

- Async Progress Threads:
 - Each MPI rank spawns a "helper thread".
 - Threads progress MPI engine during app compute.
 - Progresses only inter-node, rendezvous messages.
- To enable (app is 1 stream per core; HT off):
 - MPICH_NEMESIS_ASYNC_PROGRESS=1
 - MPICH_MAX_THREAD_SAFETY=multiple
 - MPICH_GNI_USE_UNASSIGNED_CPUS=enabled

MPI Environment Variables 1

- Eager messages require buffers on receiver:
 Can increase buffer size: MPICH_GNI_NUM_BUFS
- Enable/Disable Cray collective optimizations:
 MPICH_COLL_OPT_OFF=mpi_allgather
- Allocate mailbox resources on demand / once: — MPICH_GNI_DYNAMIC_CONN=disabled

MPI Environment Variables 2

- Controlling which memory is used for SMSG:
 - Default is on the memory of faulting process.
 - For optimal MPI performance, place on die0 (die0 is near the Aries NIC):
 - MPICH_GNI_MBOX_PLACEMENT=nic
 - Only applies to first 4096 mailboxes of each rank.
- Mixed MPI/SHMEM/UPC/CAF code w/ errors?
 Try: MPICH_GNI_DMAPP_INTEROP=disabled

Conclusion

- Four main pathways:
 - Two Eager (EO, E1) and two Rendezvous (RO, R1):
 - MPICH_GNI_MAX_VSHORT_MSG_SIZE (E0->E1)
 - MPICH_GNI_MAX_EAGER_MSG_SIZE (E1->R0)
 - MPICH_GNI_NDREG_MAXSIZE (R0->R1)
- MPI progress engine:
 - MPICH_NEMESIS_ASYNC_PROGRESS=1
 - MPICH_MAX_THREAD_SAFETY=multiple
 - MPICH_GNI_USE_UNASSIGNED_CPUS=enabled