
Introduction to Make
Daniel Lucio

Introduction to MakeSeminar Series 2014

Overview

• What is it?	

• How it works?	

• Special Characters	

• Rules	

• Macros	

• Examples	

• Limitations	

• Building a program	

• More information

Introduction to MakeSeminar Series 2014

What is it?
NAME	

 make - GNU make utility to maintain groups of programs	

!
SYNOPSIS	

 make [-f makefile] [options] ... [targets] ...	

!
DESCRIPTION	

 The purpose of the make utility is to determine automatically	

 which pieces of a large program need to be recompiled, and	

 issue the commands to recompile them. You can use it to	

 describe any task where some files must be updated	

 automatically from others whenever the others change.	

Introduction to MakeSeminar Series 2014

How it works?
To prepare to use make, you must write a file called the	

makefile that describes the relationships among files in your	

program, and the states the commands for updating each file. In	

a program, typically the executable file is updated from object	

files, which are in turn made by compiling source files.	

!

The description file, usually named Makefile commonly resides in
the working directory for the project. The Makefile specifies a
hierarchy of dependencies among individual files called
components. At the top of the hierarchy there is a target.

Introduction to MakeSeminar Series 2014

How it works?
 The make program uses the makefile data base and the	

 last-modification times of the files to decide which of the files	

 need to be updated. For each of those files, it issues the 	

 commands recorded in the data base.	

!

 ‘make’ executes commands in the makefile to update one or	

 more target names, where name is typically a program. If no -f	

 option is present, make will look for the makefiles	

 GNUmakefile, makefile, and Makefile, in that order.

Introduction to MakeSeminar Series 2014

Special Characters

Starts a comment. Comments are ignored.

/ The backslash is used to continue a line.

TAB The character before a ‘command’ is a tab.

Introduction to MakeSeminar Series 2014

Rules
• A makefile consists of rules. Each rule begins with a

textual dependency line which defines a target
followed by a colon (:) and optionally an enumeration
of components (files or other targets) on which the
target depends.	

• The dependency line is arranged so that the target
(left hand of the colon) depends on components
(right hand of the colon).	

• It is common to refer to components as
prerequisites of the target.

Introduction to MakeSeminar Series 2014

Rules
target [target ...]: [component ...]
<TAB>command 1]
 .
 .
 .
[<TAB>command n]

Each command line must begin with a TAB character to
be recognized as a command.

http://en.wikipedia.org/wiki/Tab_character

Introduction to MakeSeminar Series 2014

Macros
• A makefile can contain definitions of macros. 	

• Macros are usually referred to as variables when they
hold simple string definitions, like "CC=gcc". 	

• Macros in makefiles may be overridden in the
command-line arguments passed to the Make utility. 	

• Environment variables are also available as macros.	

• A macro is used by expanding it. Traditionally this is
done by enclosing its name inside $(). An equivalent
form uses curly braces rather than parenthesis, i.e. $
{}.

http://en.wikipedia.org/wiki/Command-line_argument
http://en.wikipedia.org/wiki/Environment_variables

Introduction to MakeSeminar Series 2014

Macros
MACRO = definition
!

NEW_MACRO = $(MACRO)-$(MACRO2)
!

YYYYMMDD = ` date `
Macros can be composed of shell commands by using the
command substitution operator, denoted by backticks (`).

make MACRO="value" [MACRO="value" ...] TARGET [TARGET ...]

The generic syntax for overriding macros on the command
line is:

http://en.wikipedia.org/wiki/Command_substitution
http://en.wikipedia.org/wiki/Backticks

Introduction to MakeSeminar Series 2014

Makefile example
CC	 	 	 	 	 =	 gcc	
CFLAGS	 =	 -‐g	
	 	
all:	 helloworld	
	 	
helloworld:	 helloworld.o	
	 	 	 	 	 	 #	 Commands	 start	 with	 TAB	 not	 spaces	
	 	 	 	 	 	 $(CC)	 $(CFLAGS)	 -‐o	 $@	 $^	
	 	
helloworld.o:	 helloworld.c	
	 	 	 	 	 	 $(CC)	 $(CFLAGS)	 -‐c	 -‐o	 $@	 $<	
	 	
clean:	
	 	 	 	 	 	 rm	 -‐f	 helloworld	 helloworld.o

Macros

Target

Text
Rule

Rule

Rule

Introduction to MakeSeminar Series 2014

Makefile example
#	 ptoc:	 print	 a	 table	 of	 contents	
!

ptoc:	 ptoc_main.o	 prn	 headings.o	 \	
	 	 	 	 	 	 get_head_info.o	 check_head.o	
!

	 	 	 	 	 	 	 	 cc	 -‐o	 ptoc	 ptoc_main.o	 \	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 prn_headings.o	 \	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 get+head_info.o	 \	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 check_head.o	
!

ptoc_main.o	 prn_headings.o	 \	
get_head_info.o	 	 check_head.o:	 ptoc.h

Comment

Target
Prerequisites

Text
Action

Targets
Prerequisite

Introduction to MakeSeminar Series 2014

Makefile example

manual:	 ch01.fmt	 ch02.fmt	 ch03.fmt	
lp	 ch0[1-‐3].fmt	
!

ch01.fmt:	 ch01	
nroff	 -‐mm	 ch01	 >	 ch01.fmt	
!

ch02.fmt:	 ch02	
tbl	 ch02	 |	 nroff	 -‐mm	 >	 ch02.fmt	
!

ch03.fmt:	 ch03a	 ch03b	 ch03c	
nroff	 -‐mm	 ch03[abc]	 >	 ch03.fmt

Target Prerequisites

Text

Action

Introduction to MakeSeminar Series 2014

Building a program

$	 wget	 http://www.nano-‐editor.org/dist/v2.2/nano-‐2.2.6.tar.gz	

$	 tar	 -‐zxf	 nano-‐2.2.6.tar.gz	
$	 cd	 nano-‐2.2.6	
$./configure	 -‐-‐prefix=$HOME	
$	 make	
$	 make	 install	
$	 export	 PATH=$PATH:~/bin	
$	 nano

Example of how to build a typical program on Unix/Linux.

Introduction to MakeSeminar Series 2014

The ‘nano’ Text Editor

Introduction to MakeSeminar Series 2014

Limitations

• Tailoring build processes to a given
platform are not well handled by Make. For
instance, the compiler used on one platform
might not accept the same options as the one
used on another.	

• There are other tools like Autoconf and
CMake that do generate platform specific
build instructions, which in turn are
processed by Make.

http://en.wikipedia.org/wiki/Platform_%28computing%29

Introduction to MakeSeminar Series 2014

More information

http://www.gnu.org/software/make/	

$ man make

http://www.gnu.org/software/make/

