Introduction to
Parallel Programming
with MPI

JICS -
écg;lplglsa:::grl\%:%rciences e
Outline

» Message Passing Interface (MPI)
Today, 30-Jan-14

» Point to Point Communications

e Collective Communications

| _ﬁ Tuesday, 4-Feb-14
* Derived Datatypes , Loris 3 P +

Computational Sciences s

What is Parallel Computing?

« Parallel computing - the use of multiple computers, processors
or cores that work together on a common task.
— Each processor works on a section of the problem
— Processors are allowed to exchange information (data in
local memory) with other processors

Grid of a problem to be solved

CPU #1 works on this area CPU #2 works on this area
of the problem exchange of the problem

e

CPU #3 works on this area CPU #4 works on this area |
of the problem exchange of the problem 1

=

Joint Institute for &

Computational Sciences

S\

Message Passing Interface

JICS
Eampuiatonal Sinces ‘ﬁ%
What is MPI?

* In 1992 the MPI Forum (40 organizations) established an MPI specification.

— vendors, researchers, software library developers, and users

By itself, MPI is NOT a library - but rather the specification of what such a
library should be.

As such MPI IS the first standardlzed vendor mdependent message passing

Jonnt Institute for &
Computational Sciences &=

General MPI1 Program Structure

Declarations, prototypes, etc.

Program begins

Serial code

FIRTtaliZe VIPI ERVITONMENt Parallel code begins

JICS
Eampuiatonal Sinces ‘ﬁ%
First MP1 Program: Hello,World!

#include <stdio.h>
#include <mpi.h>
int main(int argc, char** argv)
{
MPI Init(&argc, &argv);

printf (“Hello,World \n”);

'MPI_F;

Jo nt Institute for
Computational Sciences &=

First MPI Program: [llustration

Hello.exe Hello.exe

.JIES [%
MPI Function Syntax

MPI syntax (C names are case sensitive; Fortran names are not):

C: err = MPI Xxxx(parameter,..)
Fortran: call MPI XXXX (parameter,.., ierror)

S &
Cmtpll‘tt o |1s A
SPMD Programming Paradigm

Single Program, Multiple Data (SPMD) Programming Paradigm

Same program runs on all processors, however, each processor
operates on a different set of data

The code generally contains an if-statement such as

= |f(my processor Id .eq. deS|gnated |d)then

Joint Institute (or &
Computational Sciences &=z

MPI Process Identifiers

« MPI Comm rank

— Determines the rank of the calling process in the communicator
— C:int MPI Comm rank(MPI Comm comm, int *rank)
— Fortran: call MPI COMM RANK (mpi comm, rank, ierror)

e MPT Commh81ze

.ri)up_ El‘ssotiate"ith_.ﬁ:

o

Joint Institute for &
Computational Sciences g

MPI Communicators: MPT COMM WORLD

MPI uses objects called communicators to define which collection of
processes may communicate with each other.

All MPI communication calls require a communicator argument and MPI
processes can only communicate if they share a communicator.

MPI Init () initializes a default communicator: MPT COMM WORLD
MPI COMM WORLD contains all processes

Joint Institute for &
Computational Sciences &=

“Hello From...” program illustration

Hello.exe

Joint Institute for &
Computational Sciences g

Example: “Hello From ...” — C

#include <stdio.h>

#include <mpi.h>

int main(int argc, char** argv)
{

int my rank, num procs;

MPI Init(&argc, &argv);

Jonnt Institute for &
Computational Sciences &=z

MPI Environment Management Routines

» Most commonly used MPI environment management routines
— initializing the MPI environment
— querying the MPI environment
— terminating the MPI environment

MPI Init

MPI Comm size
MPI Comm rank
MEETFinali;e

SIES %

MPI Basic Datatypes for C

MPI Datatypes

C Datatypes

MPI CHAR signed char

MPI INT signed int

MPI LONG signed long int
MPI FLOAT float

MPI DOUBLE double

MPI LONG DOUBLE long double
MPISBYIE=—— . | e e

MPI SHORT signed short int

MPI UNSIGNED CHAR

unsigned char

MPI UNSIGNED SHORT

unsigned short int

MPI UNSIGNED LONG

unsigned long int

MPI UNSIGNED

unsigned int

MPI PACKED

Main Menu

S\

Point to Point Communications

Joint Institute for ;
Computational Sciences gEmas

Overview

MPI Point to point communication is message passing between two, and only
two, different MPI tasks.

One task is performing a send operation and the other task is performing a
matching receive operation.

MPI point-to-point routines can be either blocking or non-blocking
— Blocking call stops the program until the message buffer is safe to use
— Non-blocking call separates communication from computation

MPI de'.nes foun,_c;d

mmu~.q‘iéétWF’bio.:i-r'ig,.(éimd noﬁ-bisgking send:
"safest”) I e)

Joint Institute (o &
Computational Sciences &=z

For a Communication to Succeed...

Sender must specify a valid destination rank
Receiver must specify a valid source rank
The communicator must be the same

Tags must match

Message types must match

. 1 |
Receiver’s buffer m

Jo nt Institute for &
Computational Sciences &=

Passing a Message: lllustration

RANK ID Message Passing Done (exit)

E —> mesSage= —— Message

Hello World Hello World

e\
e\
e ————————————————

S A%\
Passing a Message: Hello World Again!

C Example

#include <stdio.h>
#include <mpi.h>
int main(int argc, char ** argv)

{

Sender must specify a valid destination rank
Receiver must specify a valid source rank
The communicator must be the same

Tags must match

Message types must match

Receiver’s buffer must be large enough

int my rank, ntag = 100;
char message[1l2];

MPI Status status;

MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank) ;

if (my rank == 0) {
= "Hél;P} world"; P
’ 2,MPI CHAR,1,ntag,

.JIES

Joint Institute for
Computational Scien

Blocklng Calls

A blocking send or receive call suspends the execution of
user’s program until the message buffer being
sent/received Is safe to use.

 |n case of a blocking send, this means the data to be sent
nave been copied out of the send buffer, but these data
nave not necessarily been received in the receiving task.
The contents of the send buffer can be modified without
affecting the message that was sent

 The blocking receive implies that the data in the receive
buffer are valid.

Main Menu

C‘:{){{Es ‘rﬁi Page 24

Blocking Send and Receive

» A blocking MPI call means that the program execution will be
suspended until the message buffer is safe to use. The MPI

standards specify that a blocking SEND or RECV does not
return until the send buffer is safe to reuse (for MPI_SEND),
or the receive buffer is ready to use (for MPI_RECV).

User MPI User

User MPI User

nt Institute 10 &
Comp utational Sciences g

Non-Blocking Calls

* Non-blocking calls return immediately after initiating the
communication.

 |n order to reuse the send message buffer, the
programmer must check for its status.

* In general, a blocking or non-blocking send can be palred
toa blocklng or non- blocklpg r:ecelve .

//’_- - e _

) _—_‘.'*..\-_1-._"'-\\; | Eﬁfl—-j—;,- -ﬁ.— .a- - éﬁ

/[= Page 26
Joint Institute for
Computational Sciences A'“

Non-Blocking Send and Receive

« Separate Non-Blocking communication into three phases:
— Initiate non-blocking communication.
— Do some work (perhaps involving other communications?)

— Wait for non-blocking communication to complete.

Non-Blocking Send Diagram:

User MPI User

User MPI User

User MPI User MPI User

nt Institute 10 &
Comp utational Sciences g

Communication Modes

« MPI has 8 different types of Send
« The non-blocking send has an extra argument of request handle

Blocking Non-Blocking
Standard MPI Send MPI Isend

Synchronous MPI Ssend MPI Issend

Joint Institute for ;
Computational Sciences g

Blocking ynchronous Send: MPT SSEND

Can be started whether or not a matching receive was posted.

However, the send will complete successfully only if a matching
receive Is posted.

The sending task tells the receiver that a message is ready for it and
waits for the receiver to acknowledge

Synchronization overhead : handshake + waiting
Safest , most portable

SEND| |DONE

Joint Institute for ;
Computational Sciences g

Blocking Ready Send: MPI RSEND

May be started only if the matching receive is already posted.
Otherwise, the operation is erroneous and its outcome is undefined
Allows the removal of a hand-shake operation

The completion of the send operation does not depend on the status
of a matching receive

Minimize overhead
Must be used carefully

)

@
Blocking Buffered Send: MPT BSEND

 Can be started whether or not a matching receive was posted
It may complete before a matching receive is posted.

« Buffer can be statically or dynamically allocated

« An error will occur if there is insufficient buffer space

COPY

DONE

/'/‘)
(" ‘
X
"

Joint Institute for %@\
Computational Sciences g

Blocking Standard Send: MPT Send

Either synchronous or buffered

Implemented by vendors to give good performance for most

programs.

Simple and easy to use
N X l ’_;:" \

Joint Institute for &
Computational Sciences g

Blocking Receive: MPI Recv

There is only one receive operation, which can match any of the
send modes.

Blocking receive returns only after the receive buffer contains the
newly received message.

Non-blc g re celve can ce‘mplete befor the matehmg;end has

_IIES' ﬁ*

Joint Institute for
Computational Sclences

Example assmg a Message — Schematic

RANK ID Message Passing Done (exit)

R — message= —> Mmessage
Hello World Hello World

0 0
Send

B Recv

helloworld

—> print

- - -
helloworld

Core N

Sl IEl— message= —> Mmessage =
= (empty) Hello World

Main Menu

..IIESA%\
Example: Passing a Message — Hello World Again!

C Example
#include <stdio.h>
#include "mpi.h"
int main(int argc, char ** argv) 1 : Fatal error in MP1_Send: Invalid rank, error stack

{

How many processes can you use to run this program?

int my rank, ntag = 100; 2 : Process 0 : Hello,World!
char message[1l2]; Process 1 : Hello,World!
MPI Status status;
MPI Init(&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &my rank);
if (my rank == 0) {
char message[l12] = "Hello, world";
> end(&message,~12 MPl:QHAR¢&*ntag,MPI COMM WORLQ)

3 : Application hangs!

Joint Institute for ;
Computational Sciences g

Resources for Users: man pages and MPI web-sites

There are man pages available for MPI which should be installed in your
MANPATH. The following man pages have some introductory information
about MPI

man MPI

man cCcC

man ftn

man gsub

man MPI Init

man MPI Finalize

MPI man pages are also available online.
http://www.mcs.anl.gov/mpi/www/

Main MPI web page at Argonne National Laboratory
http: //www untl,xmmcs anl. qov/mpl

http://www.mcs.anl.gov/mpi/www/
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl
http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl
http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl
https://computing.llnl.gov/tutorials/mpi/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/

