
Main Menu

Introduction to

Parallel Programming

with MPI

Mikhail Sekachev

Main Menu

Outline

• Message Passing Interface (MPI)

• Point to Point Communications

• Collective Communications

• Derived Datatypes

Page 2

Today, 30-Jan-14

Tuesday, 4-Feb-14

Main Menu

What is Parallel Computing?

• Parallel computing - the use of multiple computers, processors

or cores that work together on a common task.

– Each processor works on a section of the problem

– Processors are allowed to exchange information (data in

local memory) with other processors

CPU #1 works on this area

of the problem

CPU #3 works on this area

of the problem

 CPU #4 works on this area

of the problem

 CPU #2 works on this area

of the problem

Grid of a problem to be solved

y

x

exchange

exchange

Page 3

Main Menu

Good Old PC Cluster

Page 4

Main Menu

Message Passing Interface

Page 5

Main Menu

What is MPI?

• In 1992 the MPI Forum (40 organizations) established an MPI specification.

– vendors, researchers, software library developers, and users

• By itself, MPI is NOT a library - but rather the specification of what such a

library should be.

• As such, MPI is the first standardized vendor independent, message passing

specification.

– the syntax of MPI is standardized!

– the functional behavior of MPI calls is standardized!

• Popular implementations: MPICH, OpenMPI (not to be confused with

openMP), LAM, Cray MPT…

Page 6

Main Menu

General MPI Program Structure

Page 7

MPI Include file

Initialize MPI environment

Do work and make message passing calls

Terminate MPI environment

Declarations, prototypes, etc.

Program begins

Serial code

Serial code

Program ends

Parallel code begins

Parallel code ends

.

.

.

.

.

.

.

.

.

.

.

.

Main Menu

First MPI Program: Hello,World!

#include <mpi.h>

 MPI_Init(&argc, &argv);

 MPI_Finalize();

Page 8

#include <stdio.h>

int main(int argc, char** argv)

{

 printf(“Hello,World \n”);

}

• Every C program begins inside a function called main

• Every function starts with “{” and ends with “}”
• From main we can call other functions (including build-in functions)

• #include is a "preprocessor" directive that adds additional code from the

header file called stdio.h

Main Menu

First MPI Program: Illustration

Page 9

Hello.exe

Hello.exe

Hello.exe

Hello.exe

Hello,World

Hello,World

Hello,World

Hello,World

Hello.exe

0

1

2

3

Main Menu

MPI Function Syntax

MPI syntax (C names are case sensitive; Fortran names are not):

 C: err = MPI_Xxxx(parameter,…)

 Fortran: call MPI_XXXX(parameter,…, ierror)

Errors:

 C: Returned as err. MPI_SUCCESS if successful

 Fortran: Returned as ierror parameter. MPI_SUCCESS if successful

Page 10

Main Menu

SPMD Programming Paradigm

• Single Program, Multiple Data (SPMD) Programming Paradigm

• Same program runs on all processors, however, each processor

operates on a different set of data

• The code generally contains an if-statement such as

 if (my_processor_id .eq. designated_id) then

 -----/do work/-----

 end

Page 11

Main Menu

MPI Process Identifiers

• MPI_Comm_rank

– Determines the rank of the calling process in the communicator

– C : int MPI_Comm_rank(MPI_Comm comm, int *rank)

– Fortran : call MPI_COMM_RANK(mpi_comm, rank, ierror)

• MPI_Comm_size

– Determines the size of the group associated with a communicator

– C : int MPI_Comm_size(MPI_Comm comm, int *size)

– Fortran : call MPI_COMM_SIZE(mpi_comm, size, ierror)

• MPI_Comm : Communicator

Page 12

Main Menu

MPI Communicators: MPI_COMM_WORLD

• MPI uses objects called communicators to define which collection of

processes may communicate with each other.

• All MPI communication calls require a communicator argument and MPI
processes can only communicate if they share a communicator.

• MPI_Init() initializes a default communicator: MPI_COMM_WORLD

• MPI_COMM_WORLD contains all processes

• For simplicity, just use it wherever a communicator is required!

Page 13

Main Menu

“Hello From…” program illustration

Page 14

Hello.exe

Hello.exe

Hello.exe

Hello.exe

Hello from 3 of 4

Hello from 0 of 4

Hello from 2 of 4

Hello from 1 of 4

Hello.exe

0

1

2

3

Main Menu

Example: “Hello From …” – C

#include <stdio.h>

#include <mpi.h>

int main(int argc, char** argv)

{

 int my_rank, num_procs;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 printf(“Hello from %d of %d.\n”, my_rank, num_procs);

 MPI_Finalize();

}

Page 15

Main Menu

MPI Environment Management Routines

• Most commonly used MPI environment management routines
– initializing the MPI environment

– querying the MPI environment

– terminating the MPI environment

MPI_Init

MPI_Comm_size

MPI_Comm_rank

MPI_Finalize

• Other MPI environment management routines

MPI_Abort

MPI_Get_processor_name

MPI_Initialized

MPI_Wtime

MPI_Wtick

Page 16

Main Menu

MPI Basic Datatypes for C

Page 17

MPI Datatypes C Datatypes

MPI_CHAR signed char

MPI_INT signed int

MPI_LONG signed long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE --------

MPI_SHORT signed short int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED unsigned int

MPI_PACKED --------

Main Menu

Point to Point Communications

Page 18

Main Menu

Overview

• MPI Point to point communication is message passing between two, and only

two, different MPI tasks.

• One task is performing a send operation and the other task is performing a

matching receive operation.

• MPI point-to-point routines can be either blocking or non-blocking

– Blocking call stops the program until the message buffer is safe to use

– Non-blocking call separates communication from computation

• MPI defines four communication modes for blocking and non-blocking send:

– synchronous mode ("safest")

– ready mode (lowest system overhead)

– buffered mode (decouples sender from receiver)

– standard mode (compromise)

• The receive call does not specify communication mode - it is simply blocking

and non-blocking

Page 19

Main Menu

For a Communication to Succeed…

• Sender must specify a valid destination rank

• Receiver must specify a valid source rank

• The communicator must be the same

• Tags must match

• Message types must match

• Receiver’s buffer must be large enough

Page 20

Main Menu

Passing a Message: Illustration

Page 21

B
helloworld

helloworld

helloworld

RANK ID

message=

Hello World

message=

(empty)

message

Hello World

message =

Hello World

send

recv

print

print

Message Passing Done (exit)

0 0 0

1 1 1

Main Menu

 Passing a Message: Hello World Again!

C Example
#include <stdio.h>

#include <mpi.h>

int main(int argc, char ** argv)

 {

 int my_rank, ntag = 100;

 char message[12];

 MPI_Status status;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 if (my_rank == 0) {

 message[12] = "Hello, world";

 MPI_Send(&message, 12,MPI_CHAR,1,ntag,MPI_COMM_WORLD);

 printf("Process %d : %s\n", my_rank, message);

 }

 else if (my_rank == 1) {

 MPI_Recv(&message, 12,MPI_CHAR,0,ntag,MPI_COMM_WORLD, &status);

 printf("Process %d : %s\n", my_rank, message);

 }

 MPI_Finalize();

 }

Page 22

 Sender must specify a valid destination rank

 Receiver must specify a valid source rank

 The communicator must be the same

 Tags must match

 Message types must match

 Receiver’s buffer must be large enough

Main Menu

Blocking Calls

• A blocking send or receive call suspends the execution of

user’s program until the message buffer being

sent/received is safe to use.

• In case of a blocking send, this means the data to be sent

have been copied out of the send buffer, but these data

have not necessarily been received in the receiving task.

The contents of the send buffer can be modified without

affecting the message that was sent

• The blocking receive implies that the data in the receive

buffer are valid.

Page 23

Main Menu

Blocking Send and Receive

• A blocking MPI call means that the program execution will be
suspended until the message buffer is safe to use. The MPI
standards specify that a blocking SEND or RECV does not
return until the send buffer is safe to reuse (for MPI_SEND),
or the receive buffer is ready to use (for MPI_RECV).

User MPI User

User MPI User

time

Send

Process

Receive

Process

Start send

Receive

Execution

is suspended

Blocking Send/Receive Diagram:

Page 24

Main Menu

Non-Blocking Calls

• Non-blocking calls return immediately after initiating the

communication.

• In order to reuse the send message buffer, the

programmer must check for its status.

• In general, a blocking or non-blocking send can be paired

to a blocking or non-blocking receive

Page 25

Main Menu

Non-Blocking Send and Receive

• Separate Non-Blocking communication into three phases:
– Initiate non-blocking communication.
– Do some work (perhaps involving other communications?)
– Wait for non-blocking communication to complete.

User MPI User MPI User

User MPI User

time

Send

Process

Receive

Process

Start send

Receive

Complete send

(wait)

Non-Blocking Send Diagram:

Non-Blocking Receive Diagram:

User User

time

Send

Process

Receive

Process User MPI User User

Start receive

Start send

MPI

MPI

Complete receive (wait)

Page 26

Main Menu

Communication Modes

• MPI has 8 different types of Send

• The non-blocking send has an extra argument of request handle

Blocking Non-Blocking

Standard MPI_Send MPI_Isend

Synchronous MPI_Ssend MPI_Issend

Buffer MPI_Bsend MPI_Ibsend

Ready MPI_Rsend MPI_Iresend

MPI_RECV MPI_IRECV

Page 27

Main Menu

Blocking Synchronous Send: MPI_SSEND

• Can be started whether or not a matching receive was posted.

• However, the send will complete successfully only if a matching
receive is posted.

• The sending task tells the receiver that a message is ready for it and
waits for the receiver to acknowledge

• Synchronization overhead : handshake + waiting

• Safest , most portable

S

R

SEND DONE

WAIT

READY DONE

Page 28

Main Menu

Blocking Ready Send: MPI_RSEND

• May be started only if the matching receive is already posted.

• Otherwise, the operation is erroneous and its outcome is undefined

• Allows the removal of a hand-shake operation

• The completion of the send operation does not depend on the status

of a matching receive

• Minimize overhead

• Must be used carefully
SEND

DONE

R

S

READY DONE

Page 29

Main Menu

Blocking Buffered Send: MPI_BSEND

• Can be started whether or not a matching receive was posted

• It may complete before a matching receive is posted.

• Buffer can be statically or dynamically allocated

• An error will occur if there is insufficient buffer space

DONE
COPY

READY DONE

S

R

Page 30

Main Menu

Blocking Standard Send: MPI_Send

• Either synchronous or buffered

• Implemented by vendors to give good performance for most

programs.

• Simple and easy to use

Page 31

Main Menu

Blocking Receive: MPI_Recv

• There is only one receive operation, which can match any of the

send modes.

• Blocking receive returns only after the receive buffer contains the

newly received message.

• Non-blocking receive can complete before the matching send has

completed (of course, it can complete only after the matching send

has started)

Page 32

Main Menu

Example: Passing a Message – Schematic

B

P0

helloworld

helloworld

RANK ID

message=

Hello World

message=

(empty)

message

Hello World

message =

Hello World

Send

Recv

print

print

Message Passing Done (exit)

P0

P1

P0

P1 P1

Core 0

Core 1

Core 2

...

Core N

Core 0

Core 1

Core 2

...

Core N

Core 0

Core 1

Core 2

...

Core N

Page 33

Main Menu

 Example: Passing a Message – Hello World Again!

C Example
#include <stdio.h>

#include "mpi.h"

int main(int argc, char ** argv)

 {

 int my_rank, ntag = 100;

 char message[12];

 MPI_Status status;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 if (my_rank == 0) {

 char message[12] = "Hello, world";

 MPI_Send(&message, 12,MPI_CHAR,1,ntag,MPI_COMM_WORLD);

 printf("Process %d : %s\n", my_rank, message);

 }

 else

 {

 MPI_Recv(&message, 12,MPI_CHAR,0,ntag,MPI_COMM_WORLD, &status);

 printf("Process %d : %s\n", my_rank, message);

 }

 MPI_Finalize();

 }

Page 34

How many processes can you use to run this program?

1 : Fatal error in MPI_Send: Invalid rank, error stack

2 : Process 0 : Hello,World!

 Process 1 : Hello,World!

3 : Application hangs!

 if (my_rank == 1)

Main Menu

Resources for Users: man pages and MPI web-sites

• There are man pages available for MPI which should be installed in your
MANPATH. The following man pages have some introductory information
about MPI.

 % man MPI
 % man cc
 % man ftn
 % man qsub
 % man MPI_Init
 % man MPI_Finalize

• MPI man pages are also available online.
http://www.mcs.anl.gov/mpi/www/

• Main MPI web page at Argonne National Laboratory
http://www-unix.mcs.anl.gov/mpi

• Set of guided exercises
http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl

• MPI tutorial at Lawrence Livermore National Laboratory
 https://computing.llnl.gov/tutorials/mpi/

• MPI Forum home page contains the official copies of the MPI standard.
http://www.mpi-forum.org/

Page 35

http://www.mcs.anl.gov/mpi/www/
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl
http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl
http://www-unix.mcs.anl.gov/mpi/tutorial/mpiexmpl
https://computing.llnl.gov/tutorials/mpi/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/

